Existence and decay rates for a semilinear dissipative fractional second order evolution equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Multiple Periodic Solutions for a Semilinear Evolution Equation

In this paper, we consider the existence of multiple periodic solutions for the problem du , . , — +Lu = g(u) + h, r>0, dt "(0) = u(T), where L is a uniformly strongly elliptic operator with domain D(L) = Hjf(Q), g: R —► R is a continuous mapping, T > 0 and h: (0,T) —> HTM(Q.) is a measurable function.

متن کامل

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

Existence of mild solutions for semilinear equation of evolution

Abstract. The aim of this paper is to give an existence theorem for a semilinear equation of evolution in the case when the generator of semigroup of operators depends on time parameter. The paper is a generalization of [2]. Basing on the notion of a measure of noncompactness in Banach space, we prove the existence of mild solutions of the equation considered. Additionally, the applicability of...

متن کامل

Existence of Solutions for a Nonlinear Fractional Order Differential Equation

Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.

متن کامل

Existence of Solutions of Abstract Fractional Impulsive Semilinear Evolution Equations

In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ciência e Natura

سال: 2020

ISSN: 2179-460X,0100-8307

DOI: 10.5902/2179460x40996